TEACHING AND LEARNING MATERIAL

SUBJECT: CIRCUIT THEORY SEMESTER: 3RD

CHAPTER-1

DIFFERENT TYPES OF POWER SOURCE

TYPES OF SOURCE Cell Battery Direct Current Alternating Current

DIFFERENT TYPES OF WAVE

BASIC ELECTRICAL SYMBOLS

RESISTANCE

DIFFERENT TYPES OF CAPACITOR

ENERGY SOURCES

ENERGY SOURCES

DESERTIFIACATION

LAND DEGRADATION

Working of inductor

Norton's Theorem

open circuit voltage by r.

Thevenin's Theorem

Any collection of batteries and resistances with two terminals is electrically equivalent. Any combination of batteries and resistances with two terminals can be replaced by a single voltage to an ideal <u>current source</u> i in parallel with a single resistor r. The value of r is the same as that in the <u>Thevenin equivalent</u> and the current i can be found by dividing the the value of r is e divided by the current with the terminals short circuited.

Magnetization curve (excitation) for a CT.
Output voltage as a function of the magnetizing current.
Vo = f (Im)

Time domain:

$$v_{1} = L_{1} \frac{di_{1}}{dt} + L_{12} \frac{di_{2}}{dt}$$

$$V_{1} = j\omega L_{1}I_{1} + j\omega L_{12}I_{2}$$

$$V_{2} = L_{21} \frac{di_{1}}{dt} + L_{2} \frac{di_{2}}{dt}$$

$$V_{2} = j\omega L_{21}I_{1} + j\omega L_{2}I_{2}$$

Phasor domain:

$$\begin{split} V_1 &= j\omega L_1 I_1 + j\omega L_{12} I_2 \\ V_2 &= j\omega L_{21} I_1 + j\omega L_2 I_2 \end{split}$$

where,
$$L_{12}=L_{12}=\pm k\sqrt{L_{1}L_{2}}$$

Figure: 1 Series R-C circuit

$$v_L(t) = Ve^{-(t/[L/R])} = Ve^{-(R/L)t}$$

CHAPTER-6

Two-port Network Representation

z-parameter

$$V_1 = Z_{11} \dot{l}_1 + Z_{12} \dot{l}_2$$

$$V_2 = Z_{21}i_1 + Z_{22}i_2$$

$$\begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{Z}_{11} & \mathbf{Z}_{12} \\ \mathbf{Z}_{21} & \mathbf{Z}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{i}_1 \\ \mathbf{i}_2 \end{bmatrix}$$

y-parameter

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

■ h-parameter

$$\begin{bmatrix} v_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ v_2 \end{bmatrix}$$

ABCD parameters

$$\begin{bmatrix} v_1 \\ i_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} v_2 \\ -i_2 \end{bmatrix}$$

26/31 Department of Electronic Engineering, NTUT